

Human Eye

(1) **Eye lens** : Over all behaves as a convex lens of $\mu = 1.437$

(2) Retina : Real and inverted image of an object, obtained at retina, brain sense it erect.

(3) Yellow spot: It is the most sensitive part, the image formed at yellow spot is brightest.

(4) Blind spot : Optic nerves goes to brain through blind spot. It is not sensitive for light.

(5) **Ciliary muscles -** Eye lens is fixed between these muscles. It's both radius of curvature can be changed by applying pressure on it through ciliary muscles.

(6) **Power of accomodation :** The ability of eye to see near objects as well as far objects is called power of accomodation.

Wate : D When we look distant objects, the eye is relaxed and it's focal length is largest.

(7) **Range of vision** : For healthy eye it is 25 *cm* (near point) to ∞ (far point).

A normal eye can see the objects clearly, only if they are at a distance greater than 25 *cm.* This distance is called Least distance of distinct vision and is represented by *D*.

(8) **Persistence of vision :** Is 1/10 *sec. i.e.* if time interval between two consecutive light pulses is lesser than 0.1 *sec.*, eye cannot distinguish them separately.

(9) **Binocular vision**: The seeing with two eyes is called binocular vision.

(10) Resolving limit : The minimum angular displacement between two objects, so that they are just

resolved is called resolving limit. For eye it is $1' = \left(\frac{1}{60}\right)^{\circ}$.

Specific Example

A person wishes to distinguish between two pillars located at a distances of 11 *Km*. What should be the minimum distance between the pillars.

CLICK HERE

Solution : As the limit of resolution of eye is $\left(\frac{1}{60}\right)^{\circ}$

So
$$\theta > \left(\frac{1}{60}\right)^o \implies \frac{d}{11 \times 10^3} > \left(\frac{1}{60}\right) \times \frac{\pi}{180} \implies d > 3.2 n$$

🕀 www.studentbro.in

(11) Defects in eye

Get More Learning Materials Here :

Myopia (short sightness)	Hypermetropia (long sightness)		
(i) Distant objects are not seen clearly but nearer objects are clearly visible.	(i) Distant objects are seen clearly but nearer object are not clearly visible.		
(ii) Image formed before the retina.	(ii) Image formed behind the retina.		
Retina	Retina		
(iii) Far point comes closer.	(iii) Near point moves away		
(iv) Reasons :	(iv) Reasons :		
(a) Focal length or radii of curvature of lens reduced or power of lens increases.	(a) Focal length or radii of curvature of lens increases or power of lens decreases.		
(b) Distance between eye lens and retina increases.	(b) Distance between eye lens and retina decreases.		
(v) Removal : By using a concave lens of suitable focal length.	(v) Removal : By using a convex lens.		
(vi) Focal length :	(vi) Focal length :		
(a) A person can see upto distance $\rightarrow x$	(a) A person cannot see before distance $\rightarrow d$		
wants to see $\rightarrow \infty$, so	wants to see the object place at distance $\rightarrow D$		
focal length of used lens $f = -x = -$ (defected far point)	so $f = \frac{dD}{dD}$		
(b) A person can see upto distance $\rightarrow x$	d - D		
wants to see distance $\rightarrow y (y > x)$			
so $f = \frac{xy}{x - y}$			

Presbyopia : In this defect both near and far objects are not clearly visible. It is an old age disease and it is due to the loosing power of accommodation. It can be removed by using bifocal lens.

Astigmatism : In this defect eye cannot see horizontal and vertical lines clearly, simultaneously. It is due to imperfect spherical nature of eye lens. This defect can be removed by using cylindrical lens (Torric lenses).

Microscope

It is an optical instrument used to see very small objects. It's magnifying power is given by

Visual angle with instrument (β)

 $m = \frac{c}{\text{Visual angle when object is placed at least distance of distinct vision } (\alpha)}$

(1) Simple miscroscope

- (i) It is a single convex lens of lesser focal length.
- (ii) Also called magnifying glass or reading lens.

Get More Learning Materials Here :

CLICK HERE

🕀 www.studentbro.in

(iii) Magnification's, when final image is formed at D and ∞ (*i.e.* m_D and m_∞)

$$m_D = \left(1 + \frac{D}{f}\right)_{\max}$$
 and $m_{\infty} = \left(\frac{D}{f}\right)_{\min}$

Note: $\square m_{\max} - m_{\min} = 1$

□ If lens is kept at a distance *a* from the eye then $m_D = 1 + \frac{D-a}{f}$ and $m_{\infty} = \frac{D-a}{f}$

(2) Compound microscope

(i) Consist of two converging lenses called objective and eye lens.

(ii) $f_{\text{eye lens}} > f_{\text{objective}}$ and

(diameter) _{eye lens} > (diameter)_{objective}

(iii) Final image is magnified, virtual and inverted.

(iv) $u_0 = \text{Distance of object from objective (0)},$

 v_0 = Distance of image (*A'B'*) formed by objective from objective, u_e = Distance of *A'B'* from eye lens, v_e = Distance of final image from eye lens, f_0 = Focal length of objective, f_e = Focal length of eye lens.

$$\begin{aligned} \text{Magnification}: \quad m_D &= -\frac{v_0}{u_0} \left(1 + \frac{D}{f_e} \right) = -\frac{f_0}{(u_0 - f_0)} \left(1 + \frac{D}{f_e} \right) = -\frac{(v_0 - f_0)}{f_0} \left(1 + \frac{D}{f_e} \right) \\ m_\infty &= -\frac{v_0}{u_0} \cdot \frac{D}{F_e} = \frac{-f_0}{(u_0 - f_0)} \left(\frac{D}{f_e} \right) = -\frac{(v_0 - f_0)}{f_0} \cdot \frac{D}{F_e} \end{aligned}$$

Length of the tube (*i.e.* distance between two lenses)

When final image is formed at D; $L_D = v_0 + u_e = \frac{u_0 f_0}{u_0 - f_0} + \frac{f_e D}{f_e + D}$

When final images is formed at ∞ ; $L_{\infty} = v_0 + f_e = \frac{u_0 f_0}{u_0 - f_0} + f_e$

(Do not use sign convention while solving the problems)

$$\underbrace{\text{Note:}}_{\infty} \square m_{\infty} = \frac{(L_{\infty} - f_0 - f_e)D}{f_0 f_e}$$

 \Box For maximum magnification both f_0 and f_e must be less.

 $\square \quad m = m_{\text{objective}} \times m_{\text{eye lens}}$

If objective and eye lens are interchanged, practically there is no change in magnification.

(3) **Resolving limit and resolving power**: In reference to a microscope, the minimum distance between two lines at which they are just distinct is called Resolving limit (*RL*) and it's reciprocal is called Resolving power (*RP*)

$$R.L. = \frac{\lambda}{2\mu\sin\theta}$$
 and $R.P. = \frac{2\mu\sin\theta}{\lambda} \Longrightarrow R.P. \propto \frac{1}{\lambda}$

 λ = Wavelength of light used to illuminate the object,

 μ = Refractive index of the medium between object and objective,

 θ = Half angle of the cone of light from the point object, $\mu \sin \theta$ = Numerical aperture.

Note : \Box Electron microscope : electron beam ($\lambda \approx 1 \text{ Å}$) is used in it so it's *R.P.* is approx 5000 times more than that of ordinary microscope ($\lambda \approx 5000 \text{ Å}$)

Telescope

By telescope distant objects are seen.

(1) Astronomical telescope

- (i) Used to see heavenly bodies.
- (ii) $f_{\text{objective}} > f_{\text{eyelens}}$ and $d_{\text{objective}} > d_{\text{eyelens}}$.
- (iii) Intermediate image is real, inverted and small.
- (iv) Final image is virtual, inverted and small.

(v) Magnification :
$$m_D = -\frac{f_0}{f_e} \left(1 + \frac{f_e}{D}\right)$$
 and $m_{\infty} = -\frac{f_e}{f_e}$

(vi) Length :
$$L_D = f_0 + u_e = f_0 + \frac{f_e D}{f_e + D}$$
 and $L_{\infty} = f_0 + f_e$

(2) Terrestrial telescope

(i) Used to see far off object on the earth.

(ii) It consists of three converging lens : objective, eye lens and erecting lens.

(iii) It's final image is virtual erect and smaller.

(iv) Magnification :
$$m_D = \frac{f_0}{f_e} \left(1 + \frac{f_e}{D} \right)$$
 and $m_\infty = \frac{f_0}{f_e}$

(v) Length :
$$L_D = f_0 + 4f + u_e = f_0 + 4f + \frac{f_e D}{f_e + D}$$
 and $L_{\infty} = f_0 + 4f + f_e$

(3) Galilean telescope

- (i) It is also a terrestrial telescope but of much smaller field of view.
- (ii) Objective is a converging lens while eye lens is diverging lens

(iii) Magnification :
$$m_D = \frac{f_0}{f_e} \left(1 - \frac{f_e}{D} \right)$$
 and $m_\infty = \frac{f_0}{f_e}$

(iv) Length :
$$L_D = f_0 - u_e$$
 and $L_{\infty} = f_0 - f_e$

(4) Resolving limit and resolving power

O objective

Get More Learning Materials Here : 📕

🕀 www.studentbro.in

Smallest angular separations ($d\theta$) between two distant objects, whose images are separated in the telescope is called resolving limit. So resolving limit $d\theta = \frac{1.22\lambda}{\sigma}$

and resolving power $(RP) = \frac{1}{d\theta} = \frac{a}{1.22\lambda} \Rightarrow R.P. \propto \frac{1}{\lambda}$ where a = aperture of objective.

Note: \Box Minimum separation (*d*) between objects, so they can just resolved by a telescope is $-d = \frac{r}{RP}$

where r = distance of objects from telescope.

(5) Binocular

WUALITY EFFORTS IN TEACHING -

If two telescopes are mounted parallel to each other so that an object can be seen by both the eyes simultaneously, the arrangement is called 'binocular'. In a binocular, the length of

each tube is reduced by using a set of totally reflecting prisms which provided intense, erect image free from lateral inversion. Through a binocular we get two images of the same object from different angles at same time. Their superposition gives the perception of depth also along with length and breadth, *i.e.*, binocular vision gives proper three-dimensional (3*D*) image.

Concepts

- As magnifying power is negative, the image seen in astronomical telescope is truly inverted, i.e., left is turned right with upside down simultaneously. However, as most of the astronomical objects are symmetrical this inversion does not affect the observations.
- Objective and eye lens of a telescope are interchanged, it will not behave as a microscope but object appears very small.
- In a telescope, if field and eye lenses are interchanged magnification will change from (f_o / f_e) to (f_e / f_o), i.e., it will change from m to (1/m), i.e., will become (1/m²) times of its initial value.
- As magnification for normal setting as (f_o / f_e), so to have large magnification, f_o must be as large as practically possible and f_e small. This is why in a telescope, objective is of large focal length while eye piece of small.
- In a telescope, aperture of the field lens is made as large as practically possible to increase its resolving power as resolving power of a telescope ∝ (D/λ)^{*}. Large aperture of objective also helps in improving the brightness of image by gathering more light from distant object. However, it increases aberrations particularly spherical.
- For a telescope with increase in length of the tube, magnification decreases.
- In case of a telescope if object and final image are at infinity then :

$$m = \frac{f_o}{f_e} = \frac{D}{d}$$

- ⁽²⁾ If we are given four convex lenses having focal lengths $f_1 > f_2 > f_3 > f_4$. For making a good telescope and microscope. We choose the following lenses respectively. Telescope $f_1(o), f_4(e)$ Microscope $f_4(o), f_3(e)$
- If a parrot is sitting on the objective of a large telescope and we look towards (or take a photograph)of distant astronomical object (say moon) through it, the parrot will not be seen but the intensity of the image will be slightly reduced as the parrot will act as obstruction to light and will reduce the aperture of the objective.

Examples

<i>Example</i> : 1	A man can see the objects he can see an object at infi	upto a distance of one nity, he requires a lens	metre from his eyes. For whose power is	correcting his eye sight so that
	,	or	·	
	A man can see upto 100 cm	<i>n</i> of the distant object.	The power of the lens requ	uired to see far objects will be IMP PMT 1993, 2003
	(a) +0.5 <i>D</i> ((b) +1.0 <i>D</i>	(c) +2.0 <i>D</i>	(d) -1.0 <i>D</i>
Solution: (d)	f = -(defected far point) = - f	100 <i>cm</i> . So power of the second seco	he lens $P = \frac{100}{f} = \frac{100}{-100} =$	-1 <i>D</i>
<i>Example</i> : 2	A man can see clearly up to <i>metres</i>	o 3 <i>metres</i> . Prescribe a	lens for his spectacles so t	that he can see clearly up to 12
	(a) - 3/4 <i>D</i> ((b) 3 <i>D</i>	(c) - 1/4 <i>D</i>	[DPM1 2002] (d) -4 <i>D</i>
<i>Solution:</i> (c)	By using $f = \frac{xy}{x-y} \Rightarrow f = \frac{3}{3}$	$\frac{3 \times 12}{3 - 12} = -4m$. Hence p	ower $P = \frac{1}{f} = -\frac{1}{4}D$	
<i>Example</i> : 3	The diameter of the eye-ba (a) $2 D$ to $10 D$ (III of a normal eye is ab (b) 40 <i>D</i> to 32 <i>D</i>	out 2.5 <i>cm.</i> The power of t (c) 9 <i>D</i> to 8 <i>D</i>	the eye lens varies from (d) 44 <i>D</i> to 40 <i>D</i>
<i>Solution:</i> (d)	An eye sees distant objects	s with full relaxation so	$\frac{1}{2.5 \times 10^{-2}} - \frac{1}{-\infty} = \frac{1}{f} \text{ or }$	$P = \frac{1}{f} = \frac{1}{25 \times 10^{-2}} = 40 D$
	An eye sees an object at 25	5 <i>cm</i> with strain so $\frac{1}{2.5}$	$\frac{1}{\times 10^{-2}} - \frac{1}{-25 \times 10^{-2}} = \frac{1}{f} \text{ c}$	or $P = \frac{1}{f} = 40 + 4 = 44 D$
<i>Example</i> : 4	The resolution limit of eye separation of 3 <i>metre</i> . For t	is 1 <i>minute</i> . At a distant the two persons to be j	ance of <i>r</i> from the eye, tw ust resolved by the naked	o persons stand with a lateral eye, <i>r</i> should be
	(a) 10 <i>km</i> ((b) 15 <i>km</i>	(c) 20 <i>km</i>	(d) 30 <i>km</i>
<i>Solution:</i> (a)	From figure $\theta = \frac{d}{r}$; where	$\theta = 1' = \left(\frac{1}{60}\right)^o = \left(\frac{1}{60}\right)$	$\times \frac{\pi}{180}$ rad	
	$\Rightarrow 1 \times \frac{1}{60} \times \frac{\pi}{180} = \frac{3}{r} \Rightarrow r =$	10 <i>km</i>		
<i>Example</i> : 5	Two points separated by a wavelength 6000 $Å$ is used	a distance of 0.1 <i>mm</i> . If the light of wavelen	can just be resolved in gth 4800 $\mathring{\mathcal{A}}$ is used this lim	a microscope when a light of it of resolution becomes
	(a) 0.08 <i>mm</i> ((b) 0.10 <i>mm</i>	(c) 0.12 <i>mm</i>	[UPSEAT 2002] (d) 0.06 <i>mm</i>
Solution: (a)	By using resolving limit (R.L.)	$\propto \lambda \Rightarrow \frac{(R.L.)_1}{(R.L.)_2} = \frac{\lambda_1}{\lambda_2}$	$\Rightarrow \frac{0.1}{(R.L.)_2} = \frac{6000}{4800} \Rightarrow (R$	$R.L.)_2 = 0.08 mm$.
<i>Example</i> : 6	In a compound microscope 2 <i>cm</i> form objective and the lenses is	e, the focal lengths of to e final image is formed	wo lenses are 1.5 <i>cm</i> and d at 25 <i>cm</i> from eye lens.	6.25 <i>cm</i> an object is placed at The distance between the two
<i>Solution:</i> (d)	(a) $6.00 \ cm$ (It is given that $f_o = 1.5 \ cm$, $f_o = 1.5 \$	(b) 7.75 <i>cm</i> f _e = 6.25 <i>cm</i> , u _o = 2 <i>cm</i>	(c) 9.25 <i>cm</i>	[EAMCET (Med.) 2000] (d) 11.00 <i>cm</i>
	When final image is formed	at least distance of di	stinct vision, length of the	tube $L_D = \frac{u_o f_o}{u_o - f_o} + \frac{f_e D}{f_e + D}$
	$\Rightarrow L_D = \frac{2 \times 1.5}{(2 - 1.5)} + \frac{6.25 \times 22}{(6.25 + 2)}$	$\frac{5}{(5)} = 11 \ cm$.		
<i>Example</i> : 7	The focal lengths of the ob respectively. The distance	pjective and the eye-pi between the objective	ece of a compound micro and the eye-piece is 15.0	oscope are 2.0 <i>cm</i> and 3.0 <i>cm cm</i> . The final image formed by

CLICK HERE

》

Get More Learning Materials Here : 📕

www.studentbro.in

EFFURIS IN TEACHING

				Optical Instrur	ments 99
	the eye-piece is at inf produced by the object	inity. The two lenses a ive measured from the c	re thin. The distances objective lens are respe	in <i>cm</i> of the object and t	he image T-JEE 1995]
	(a) 2.4 and 12.0	(b) 2.4 and 15.0	(c) 2.3 and 12.0	(d) 2.3 and 3.0	
Solution: (a)	Given that $f_o = 2 cm$, $f_o = 2 cm$	$f_e = 3 \ cm$, $L_{\infty} = 15 \ cm$			
	By using $L_{\infty} = v_o + f_e$ =	$\Rightarrow 15 = v_o + 3 \Rightarrow v_o = 12$	cm . Also $\frac{v_o}{u_o} = \frac{v_o - f_o}{f_o}$	$\Rightarrow \frac{12}{u_o} = \frac{12-2}{2} \Rightarrow u_o = 2.4$	<i>cm</i> .
<i>Example</i> : 8	The focal lengths of the magnifying power for	ne objective and eye-ler he relaxed eye is 45, the	ns of a microscope are in the length of the tube	1 <i>cm</i> and 5 <i>cm</i> respectives is	ely. If the CPMT 1979]
	(a) 30 <i>cm</i>	(b) 25 <i>cm</i>	(c) 15 <i>cm</i>	(d) 12 <i>cm</i>	
Solution: (c)	Given that $f_o = 1 \ cm$, j	$f_e = 5 \ cm$, $m_\infty = 45$			
	By using $m_{\infty} = \frac{(L_{\infty} - f)}{f_o}$.	$\frac{f_o - f_e}{f_e} \Rightarrow 45 = \frac{(L_{\infty} - 1 - 1)}{1 \times 1}$	$\frac{-5) \times 25}{5} \Rightarrow L_{\infty} = 15 \ cm$		
<i>Example</i> : 9	If the focal lengths of o object is put 1.25 <i>cn</i> magnifying power of th	objective and eye lens of away from the objective and the objection of the objective	of a microscope are 1. tive lens and the fina	2 <i>cm</i> and 3 <i>cm</i> respectivel I image is formed at infi	y and the nity, then
	(a) 150	(b) 200	(c) 250	(d) 400	
<i>Solution:</i> (b)	Given that $f_o = 1.2 cm$, $f_e = 3 \ cm$, $u_o = 1.25 \ cm$	1		
	By using $m_{\infty} = -\frac{f_o}{(u_o - u_o)}$	$\frac{1}{f_o} \cdot \frac{D}{f_e} \Rightarrow m_\infty = -\frac{1}{(1.25)}$	$\frac{.2}{-1.2} \times \frac{25}{3} = -200 \ .$		
<i>Example</i> : 10	The magnifying power 54 <i>cm</i> . The focal length (a) 6 <i>cm</i> and 48 <i>cm</i>	r of an astronomical te of eye lens and objectiv (b) 48 <i>cm</i> and 6 <i>cm</i>	escope is 8 and the over the lens will be respective (c) 8 <i>cm</i> and 64 <i>c</i>	Jistance between the two ely [MP PMT 1991; CPMT 1991; m (d) 64 cm and 8 ci	lenses is Pb. PMT 2001] m
Solution: (a)	Given that $m_{\infty} = 8$ and	$L_{\infty} = 54$			
	By using $ m_{\infty} = \frac{f_o}{f_e}$ and	$Id L_{\infty} = f_o + f_e \text{ we get } f_o$	$= 6 \ cm$ and $f_e = 48 \ cm$		
<i>Example</i> : 11	If an object subtend a focal length $f_o = 60 \ cm$	ngle of 2° at eye when and $f_e = 5 \ cm$ respective	seen through telescor by than angle subtend l	e having objective and ey by image at eye piece will b	epiece of e [UPSEAT 200 7
	(a) 16°	(b) 50°	(c) 24°	(d) 10°	
<i>Solution:</i> (c)	By using $\frac{\beta}{\alpha} = \frac{f_o}{f_e} \Rightarrow \frac{\beta}{20}$	$\frac{\beta}{0} = \frac{60}{5} \implies \beta = 24^{\circ}$			
<i>Example</i> : 12	The focal lengths of t telescope when the image	he lenses of an astrone age is formed at the leas	omical telescope are 5 st distance of distinct vi	i0 <i>cm</i> and 5 <i>cm</i> . The leng sion is [EAMCET (E	gth of the Engg.) 2000]
	(a) 45 <i>cm</i>	(b) 55 <i>cm</i>	(c) $\frac{275}{6}$ cm	(d) $\frac{325}{6}$ cm	
<i>Solution:</i> (d)	By using $L_D = f_o + u_e =$	$f_{o} = f_{o} + \frac{f_{e}D}{f_{e} + D} = 50 + \frac{5 \times 2}{(5 + 2)}$	$\frac{5}{5} = \frac{325}{6} cm$	U U	
<i>Example</i> : 13	The diameter of moon	is $3.5 \times 10^3 km$ and its d	istance from the earth	is $3.8 \times 10^5 \ km$. If it is seen	through a
	telescope whose focal subtended by the moor	length for objective and n on the eye will be appr	d eye lens are 4 <i>m</i> and oximately	10 <i>cm</i> respectively, then	the angle
	(a) 15°	(b) 20°	(c) 30°	(d) 35°	
<i>Solution:</i> (b)	The angle subtended b	by the moon on the object	ctive of telescope $\alpha = \frac{2}{3}$	$\frac{3.5 \times 10^3}{3.8 \times 10^5} = \frac{3.5}{3.8} \times 10^{-2} \text{ rad}$	
	Also $m = \frac{f_o}{f_e} = \frac{\beta}{\alpha} \Rightarrow \frac{40}{1}$	$\frac{00}{0} = \frac{\beta}{\alpha} \implies \beta = 40 \ \alpha \implies$	$\beta = 40 \times \frac{3.5 \times 10^3}{3.8 \times 10^5} \times \frac{180}{\pi}$	- = 20 °	

CLICK HERE

Get More Learning Materials Here :

R www.studentbro.in

~

100 Optical I	nstruments
<i>Example</i> : 14	A telescope has an objective lens of 10 <i>cm</i> diameter and is situated at a distance one <i>kilometre</i> from two objects. The minimum distance between these two objects, which can be resolved by the telescope, when the mean wavelength of light is 5000 Å, is of the order of
	(a) 0.5 m (b) 5 m (c) 5 mm (d) 5 cm
Solution: (b)	Suppose minimum distance between objects is x and their distance from telescope is r
	So Peoplying limit $10^{-1.22 \lambda} x \rightarrow x^{-1.22 \lambda \times r} = 1.22 \times (5000 \times 10^{-10}) \times (1 \times 10^{-3})^{-10} \times (1 \times $
	So Resolving limit $a\theta = \frac{a}{r} \Rightarrow x = \frac{a}{a} = \frac{a}{(0-1)} = 0.1 \times 10^{-1} m = 0.1 \text{ mm}$
	Hence, It's order is $\approx 5 \text{ mm.}$
<i>Example</i> : 15	A compound microscope has a magnifying power 30. The focal length of its eye-piece is 5 <i>cm</i> . Assuming the final image to be at the least distance of distinct vision. The magnification produced by the objective will be
	(a) +5 (b) -5 (c) +6 (d) -6
Solution (b)	Magnification produced by compound microscope $m = m_o \times m_e$
	where $m_o = ?$ and $m_e = \left(1 + \frac{D}{f_e}\right) = 1 + \frac{25}{5} = 6 \implies 30 = -m_o \times 6 \implies m_o = -5$.
Tricky exar	nple: 1
	A man is looking at a small object placed at his least distance of distinct vision. Without changing his position and that of the object he puts a simple microscope of magnifying power 10 X and just sees the clear image again. The angular magnification obtained is
	(a) 2.5 (b) 10.0 (c) 5.0 (d) 1.0
Solution : ((d) Angular magnification = $\frac{\beta}{\alpha} = \frac{\tan \beta}{\tan \alpha} = \frac{I/D}{O/D} = \frac{I}{O}$
	Since image and object are at the same position, $\frac{I}{O} = \frac{v}{u} = 1 \Rightarrow$ Angular magnification = 1
Tricky exar	nple: 2
	A compound microscope is used to enlarge an object kept at a distance 0.03 <i>m</i> from it's objective which consists of several convex lenses in contact and has focal length 0.02 <i>m</i> . If a lensof focal lengt
	(a) 2.5 <i>cm</i> (b) 6 <i>cm</i> (c) 15 <i>cm</i> (d) 9 <i>cm</i>
Solution : ((d) If initially the objective (focal length F_o) forms the image at distance v_o then
	$v_o = \frac{u_o J_o}{u_o - f_o} = \frac{3 \times 2}{3 - 2} = 6 \ cm$
	Now as in case of lenses in contact $\frac{1}{F_o} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_3} + \dots = \frac{1}{f_1} + \frac{1}{F'_o} \left\{ \text{where } \frac{1}{F'_o} = \frac{1}{f_2} + \frac{1}{f_3} + \dots \right\}$
	So if one of the lens is removed, the focal length of the remaining lens system
	$\frac{1}{F'_o} = \frac{1}{F_0} - \frac{1}{f_1} = \frac{1}{2} - \frac{1}{10} \implies F'_o = 2.5 \ cm$
	This lens will form the image of same object at a distance v'_{a} such that
	$v'_{o} = \frac{u_{o}F'_{o}}{u_{o} - F'_{o}} = \frac{3 \times 2.5}{(3 - 2.5)} = 15 \ cm$
	So to refocus the image, eye-piece must be moved by the same distance through which the image formed by the objective has shifted <i>i.e.</i> $15 - 6 = 9$ <i>cm</i> .